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Free traffic flow on a complex network is key to its normal and efficient functioning. Recent works indicate
that many realistic networks possess connecting topologies with a scale-free feature: the probability distribu-
tion of the number of links at nodes, or the degree distribution, contains a power-law component. A natural
question is then how the topology influences the dynamics of traffic flow on a complex network. Here we
present two models to address this question, taking into account the network topology, the information-
generating rate, and the information-processing capacity of individual nodes. For each model, we study four
kinds of networks: scale-free, random, and regular networks and Cayley trees. In the first model, the capacity
of packet delivery of each node is proportional to its number of links, while in the second model, it is
proportional to the number of shortest paths passing through the node. We find, in both models, that there is a
critical rate of information generation, below which the network traffic is free but above which traffic conges-
tion occurs. Theoretical estimates are given for the critical point. For the first model, scale-free networks and
random networks are found to be more tolerant to congestion. For the second model, the congestion condition
is independent of network size and topology, suggesting that this model may be practically useful for designing
communication protocols.
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I. INTRODUCTION

Free, uncongested traffic flows on networks are critical
for a modern society as its normal and efficient functioning
relies on such networks as the internet, the power grid, and
transportation networks, etc. To ensure free traffic flows on a
complex network is naturally of great interest. The aim of
this paper is to address this problem via modeling. Our par-
ticular interest is to understand under what conditions traffic
congestion can occur on a complex network and to explore
possible ways of control to alleviate the congestion. The
models we have constructed are based on the setting of in-
formation transmission and exchange on the internet. There
have been many previous works in this directionf1–14g. A
basic assumption used in these studies is that the network
possesses a regular and homogeneous structure. Recent
works reveal, however, that many realistic networks includ-
ing the internet are complex with scale-free and small-world
featuresf15,16g. It is thus of paramount interest to study the
effect of network topology on traffic flow, which is the key
feature that distinguishes our work from the existing ones.
While our model is for computer networks, we expect it to
be relevant to other practical networks in general, such as the
postal service network or the airline transportation network.
Our studies may be useful for designing communication pro-
tocols for complex networks.

The structure and dynamics on complex networks have
attracted a tremendous amount of recent interestf16–18g
since the seminal works on scale-free networks by Barabási
and Albert f15g and on the small-world phenomenon by
Watts and Strogatzf19g. Large networks in nature are always
evolving in that nodes and links are continuously added to

and/or deleted from the network. Networks are growing if,
on average, the numbers of nodes and links increase with
time. Most large networks are sparse, that is, the average
number of links per node is much smaller than the total
number of nodes in the network. Growing and complex net-
works may be classified according to whether there exists a
hierarchy of organized structures. In particular, in a scale-
free network, the number of links of various nodes follows a
power-law sor algebraicd probability distribution, indicating
that nodes in the network are organized into a hierarchy of
connected clusters in terms of their numbers of links. In a
random networkf20g, nodes are connected to each other in a
completely random fashion and, as such, there is no orga-
nized hierarchy of structures in links. Regular networks pos-
sess only a few types of linking structures, in contrast to
scale-free networks that have an infinite number of possibili-
ties of linking. In this sense, the class of small-world net-
works studied by Watts and Strogatzf19g is constructed by
randomly rewiring only a small fraction of links in a regular
network and, hence, they are only a perturbed version of the
“backbone” regular network.

Mathematically, a way to characterize a complex network
is to examine the degree distributionPskd, wherek is the
realization of a random variableK measuring the number of
links at a node. Scale-free networks are characterized by

Pskd , k−g, s1d

whereg.0 is the algebraic scaling exponent. For random
networks, the degree distributions are exponential,

PHYSICAL REVIEW E 71, 026125s2005d

1539-3755/2005/71s2d/026125s8d/$23.00 ©2005 The American Physical Society026125-1



Pskd , exps− akd, s2d

wherea.0 is a constant. The specific class of small-world
networks proposed by Watts and Strogatzf19g also assumes
the exponential distribution. It should be noticed that strictly
scale-free networks are idealized. Realistic networks always
contain both scale-free and random components. This
“mixed” characteristic is the case for many networks in na-
ture such as the scientific-collaboration networkf18,21g, the
movie-actor networkf22,23g, and the conceptual network of
languagesf24g.

Models of traffic flow on computer networks have been
studied extensivelyf1–14g. In this context, the information
processors are routers which have the same function as, say,
workers in the postal service. Routers route the data packets
to their destinations. In a computer network, a node may be
a host or a router. A host can create packets with addresses of
destination and receive packets from other hosts. A router
finds, for each packet, the shortest path between the host and
the destination and forward the packet along this path in each
time step. Here, by “shortest” we mean the path with the
smallest number of links. Previous studies focus on two dif-
ferent classes of computer network models. The first class
treats all nodes as both hosts and routersf7,10–12g, and for
the second classf5,8,13,14g, some nodes are hosts and others
are routers. However, all existing models assume regular net-
work topology, such as two-dimensional latticesf5,7,8,13g or
Cayley treesf9–12g. In view of the recent evidence that the
internet and many other realistic networks are complex to a
significant extentf15,16,18g, there is a need to investigate
the dynamics of traffic flow on these networks.

In this paper, we construct two dynamical models, each
with two parameters: the information creation ratel and a
control parameterb that measures the capacity of nodes to
process information. In the first model, the capacity of packet
delivery of each node is proportional to its degree, while in
the second model, it is proportional to the number of shortest
paths passing through the nodesbetweennessf21gd. The
quantity of interest is the critical ratelc of information gen-
erationsas measured by the number of packets created within
the network in unit timed at which a phase transition occurs
from free to congested traffic flow. In particular, forl,lc,
the numbers of created and delivered packets are balanced,
resulting in a steady state, or free flow of traffic. Forl.lc,
congestions occur in the sense that the number of accumu-
lated packets increases with time, due to the fact that the
capacities of nodes for delivering packets are limited. We are
interested in determining the phase-transition pointlc, given
a network topology, in order to address which kind of net-
work is more susceptible to phase transition and therefore
traffic congestion. For this purpose, we study four kinds of
networks: Cayley trees, regular, random, and scale-free net-
works. Our main result is that, in model I,lc is larger for
networks that have a larger connectivity to betweenness ratio
for the small set of nodes with the largest betweenness. Spe-
cifically, congestion is easier to occur in Cayley trees, then
regular networks, then scale-free networks, and random net-
works are most tolerant to congestion. We give a theoretical
argument to explain this phenomenon, based on identifying

the existence of a subset of relatively heavily linked nodes in
a network as the key. This is further supported by examining
the effect of enhancing the capacities of these nodes to pro-
cess information. From another standpoint, this result sug-
gests a way to alleviate traffic congestions for scale-free net-
works: making heavily linked nodesf12g as powerful and
efficient as possible for processing information. In the sec-
ond model, we find that the congestion condition is indepen-
dent of network size and topology and it thus represents a
more useful protocol for alleviating traffic congestion on net-
works, especially for trees and regular networks.

One recent work that is particularly relevant to our study
is the one addressing optimal network topologies for local
search on networksf12g. This paper addressed the problem
of searchability in complex networks with or without con-
gestion. The focus was on optimal network configurations in
terms of search cost, with the conclusion that there are only
two classes of optimal networks: starlike or homogeneous-
isotropic configurations, depending on the number of parallel
searches. Our interest here is in the phase transition from free
traffic to congestion and how it occurs with respect to the
most representative types of complex networks found in re-
alistic applications: regular, random, and scale-free networks.
Despite the difference in the objective, the idea about the
definition and analysis of congestion in Ref.f12g is very
useful, which we have adopted here.

In Sec. II, we describe our traffic flow models. In Sec. III,
we present a theoretical analysis for estimating the critical
point for phase transition. Simulation results are given in
Sec. IV and a discussion is offered in Sec. V.

II. TRAFFIC-FLOW MODELS

Our traffic-flow model is based on the routing algorithm
in computer networks. To account for the network topology,
we assume that the capacities for processing information are
different for different nodes, depending on the numbers of
links smodel Id or the number of shortest pathssmodel IId
passing through them. Our routing algorithm consists of the
following steps.

s1d At each time step, the probability for nodei to gener-
ate a packet isl.

s2d At each time step, a nodei deliversCi packets one step
toward their destinations, whereCi =s1+intfbkigd in model I
and Ci =s1+intfbBi /Ngd in model II, 0,b,1 is a control
parameter,ki is the degree of nodei, andBi is its between-
ness. A packet, once reaching its destination, is removed
from the traffic.

s3d Once a packet is created, it is placed at the end of the
queue if this node already has several packets waiting to be
delivered to their destinations. The existing packets may be
created at some previous time steps or they are transmitted
from other nodes. At the same time, a destination node, dif-
ferent from the original one, is chosen at random in the net-
work. The router finds a shortest path between the node with
the newly created packet and its destination and, the packet
is forwarded along this path during the following time steps.
If there are several shortest paths for one packet, the one is
chosen whose next stationsselected noded has the smallest
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number of waiting packets or the shortest queueing length.
s4d At each time step, the firstCi packets at the top of the

queue of nodei, if it has more thanCi packets in its queue,
are forwarded one step toward their destinations and placed
at the end of the queues of the selected nodes. Otherwise, all
packets in the queue are forwarded one step. This procedure
applies to every node at the same time. As a result, the de-
livering time that a packet needs to reach its destination is
related not only to the distancesnumber of time stepsd be-
tween the source and the destination, but also to the number
of existing packets along its path. Note that, here, the quan-
tity Ci measures the forwarding capacity of nodei.

SinceN is the total number of nodes in the network, the
total number of created packets at each time step islN, and
the total number of delivered packets at each time step is
approximatelyoi=1

N Ci if every node has a sufficient number
of packets, which is greater than the total number of created
packets provided thatl,1. Due to the network complexity,
packets are more likely to be routed to the nodes with higher
betweenness on their way to the final destinations. As a re-
sult, packets are more likely to be accumulated at these
nodes, resulting in traffic congestion.

Qualitatively, the dynamics of traffic flow on a network is
then as follows. For small values of the creation ratel, the
number of packets on the network is small so that every
packet can be processed and delivered in time. Typically,
after a short transient time, a steady state for the traffic flow
is reached in which the instantaneous numberknstdl of pack-
ets, averaged over all nodes in the network, fluctuates about
a constant. That is, on average, the total numbers of packets
created and delivered are equal, resulting in a free-flow state.
This is in fact the well-known Little’s law in queueing theory
f25g. For larger values ofl, the number of packets created is
more likely to exceed that which can be processed in time. In
this case,knstdl grows in time and traffic congestion becomes
possible. Asl is increased from zero, we thus expect to
observe two phases: free flow for smalll and a congested
phase for largel, with a phase transition from the former to
the latter atlc. To observe the phase transition and to deter-
mine lc, given a network structure, are main goals of this
paper.

III. THEORETICAL ESTIMATION OF CRITICAL POINT

Here we give a heuristic theory for determining the phase-
transition pointlc, given a particular network structure. Be-
cause the node with the largest betweenness can be easily
congested and the congestion can quickly spread to the entire
network, it is necessary to consider only the traffic balance of
this node. Since the packets are transmitted along the short-
est paths from the source to the destination, the probability
that a created packet will pass through the node with the
largest betweennessi is Bi /o j=1

N Bj. At each time step, on
average,l packets are generated. Thus, the average number
of packets that the node with the largest betweenness re-
ceives at each time step is

Qin = lND
BLmax

o
j=1

N

Bj

, s3d

whereD is the average shortest path length of the network
andLmax is the index of the node with the largest between-
ness. On the other hand, the total number of packets that the
node with the largest betweenness can deliver at each time
step is

Qout = CLmax
. s4d

Congestion occurs when the number of incoming packets is
equal to or larger than the outgoing packets at the node with
the largest betweenness, i.e.,

Qin ù Qout. s5d

Then,

lcND
BLmax

o
j=1

N

Bj

= CLmax
. s6d

Sinceo j=1
N Bj =NsN−1dD, Eq. s6d can be simplified to

lc =
CLmax

sN − 1d

BLmax

. s7d

Equations7d can be applied to general networks, which is the
same result as in Ref.f12g.

For model I, Eq.s7d turns out to be

lc =
s1 + intfbkLmax

gdsN − 1d

BLmax

. s8d

To gain insight, we consider two special cases, regular
networks and Cayley trees. First, for regular networks, all
nodes have the same structure and the same number of links.
We thus have

BLmax
= sN − 1dD. s9d

The congestion condition can then be estimated by the
following equation:

lc <
1 + bk

D
. s10d

For regular networksD=N/2k, we have

lc,reg <
2ks1 + bkd

N
. s11d

Now consider a special kind of regular network, square
lattices with periodic boundary condition. For such a lattice
with L3L nodes,D=L /2, we have
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lc,lattice <
2s1 + bkd

L
. s12d

If b=0, Eq. s12d recovers the estimate of Ref.f13g and the
estimate from the mean field model of Fiks and Lawniczak
f7g.

A schematic illustration of a Cayley-tree network is
shown in Fig. 1. Since the root has the highest betweenness
and a small number of links, it is easy for congestion to
occur at the root, which has a major impact on the whole
tree. For these reasons,lc can be conveniently estimated by
only considering the traffic flow through the root.

The total number of nodes in the tree is

N = z0 + z1 + z2 + ¯ + zl =
zl+1 − 1

z− 1
. s13d

The betweennessBr of the root can be calculated by counting
the routes from any node in the tree to different first-order
subtrees, which must pass through the root. We obtain

Br =
1

2

sN − 1d
z

sz− 1dsN − 1d
z

z s14d

=
zszl − 1d2

2sz− 1d
. s15d

In Eq. s14d, the factorsN−1d /z is the number of nodes in
one chosen first-order subtree and the factorsN−1dsz−1d /z
is the number of nodes in all otherz−1 first-order subtrees.
The number of shortest paths from the chosen first-order sub-
tree to any other first-order subtree is the multiplication of
these two factors. The factorz means that we have precisely
z ways to choose a first-order subtree. The factor 1/2 is
included because each shortest path has been counted twice.

Since the number of links of the root isz, the number of
packets that the root can deliver per unit time is

Qout = Cr < 1 + bz. s16d

PuttingBr andCr in Eq. s7d, lc,Cayley is estimated to be

lc,Cayley<
2s1 + bzd

zl − 1
. s17d

For model II, the delivery capacity of each node is pro-
portional to its betweenness, i.e.,Ci =1+intfbBi /Ng. In this
case, the critical generating rate for general networks be-
comes

lc =
s1 + intfbBLmax

/NgdsN − 1d

BLmax

s18d

<
sN − 1d
BLmax

+ b s19d

<b, s20d

where, becauseBLmax
@N in all networks considered in this

work, the second term in Eq.s19d dominates. Equations20d
shows that the critical generating rates are roughly indepen-
dent of the network size and topology.

By comparing Eq.s20d to Eqs.s11d ands17d, we see that,
although model II makes no significant improvement on ran-
dom and scale-free networks, it can increaselc for regular
networks and Cayley trees. A practical significance is that
protocols designed based on model II can generally be robust
against traffic congestion, regardless of the network topol-
ogy.

IV. SIMULATION RESULTS

The primary goal of our simulation is to understand the
behavior of the phase transition, which leads to traffic con-
gestion, with respect to the network topology. Thus we focus
on examining the value of the critical pointlc for Cayley
trees, regular, random, and scale-free networks. Another goal
is to explore the effect of adjusting the capacity parameterb.
In particular, we are interested in the possibility of increasing
the capacities of a small subset of nodes with higher be-
tweenness to improve the network’s tolerance to traffic con-
gestions. In order to characterize the transition, we use the
order parameter introduced in Ref.f9g:

h = lim
t→`

kDQl
lDt

, s21d

where DQ=Qst+Dtd−Qstd, Qstd is the total number of
packets in the network at timet, and k¯l indicates the av-
erage over time windows ofDt. Whenl,lc, the network is
in the free-flow state; thenDQ<0 andh<0. Forl.lc, DQ
increases withDt.

In our simulations, the networks are generated as follows.
For all kinds of networks, each node points to a linked
list, which contains its nearest neighbors. For a Cayley
tree with depth l +1 and branching factorz, there are
N=intfszl+1−1d / sz−1dg nodes, which are labeled as

FIG. 1. Illustration of a Cayley
tree with the branching factorz
=3 and the level of the leavesl
=3. The root is on level 0 and the
depth of the tree is thusl +1=4.
Solid circles, circles, and double
circle represent leaves, intermedi-
ate nodes, and root, respectively.
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h0,1,2, . . . ,N−1j. Thus the list pointed to by nodei at level
j P h0,1, . . . ,l −1j contains the following node labels as chil-
dren: hi 3Z+1,i 3Z+2, . . . ,i 3Z+Zj. At the same time,
node i is inserted in the lists pointed to by each of its chil-
dren. This process begins from the root with node label 0 and
ends at the last node at levell −1. To generate a regular
network with degreek and the label seth1,2, . . . ,Nj, each
node i points to a list containing the node labels
hi −k/2 , . . . ,i −2,i −1,i +1,i +2, . . . ,i +k/2j. However, if
i + j .N, the label is replaced byi + j −N, and if i − j ,1, it is
replaced byi − j +N. Scale-free and random networks are
generated by using the general network model proposed in
Ref. f26g.

First, we present simulation results with model I. Figure 2
shows the order parameterh versusl for different capacity
parametersb for the sad Cayley tree,sbd regular network,scd
scale-free network, andsdd random network. We see that, for
all cases considered,h is approximately zero whenl is
small; it suddenly increases whenl is larger than a critical
value lc. We also observe thatlc increases withb, which
means that enhanced capacity for processing packets can
help alleviate possible congestions that are most likely to
occur at the heavily linked nodes. As a result, phase transi-
tion can be delayed in the sense that the network can be more
tolerant to traffic congestions for larger values ofl. Figure 2
also indicates that, in order to get the same order oflc, a
large value of the capacity parameterb is required for Cay-
ley trees and regular networks; however, smallb is needed
for random and scale-free networks. This means that Cayley
trees and regular networks are significantly more susceptible

to traffic congestion. This is because, in Cayley trees and
regular networks, the most congested nodes have large be-
tweenness, but very small number of links, i.e., the ratio
kLmax

/BLmax
is much smaller than those in random and scale-

free networks. Equations8d then indicates that thelc for
Cayley trees and regular networks is much smaller than that
for random and scale-free networks.

Figure 3 shows the critical generating ratelc from theo-
retical predictions and from simulations. The theoretical re-
sults are obtained by Eqs.s17d, s11d, ands8d for Cayley trees,
regular, random, and scale-free networks, respectively. In all
cases, a good agreement is observed. From Fig. 2, we see
that the critical packet generation rateslc of scale-free and
random networks are of the same order. However, a direct
comparison of simulation resultssFig. 4d shows thatlc for
random networks is actually larger than that for scale-free
networks. As mentioned, scale-free networks are heteroge-
neous in links, which causes heterogeneity in betweenness.

FIG. 2. sColor onlined For model I, the order parameterh versus
the packet-generating ratel for the following. sad Cayley tree,z
=3, l =6, kkl=2, and thusN=1093. Square, triangle, dot, circle, and
cross curves correspond to the simulations ofb=10,20,30,40,50,
respectively.sbd Regular network,N=1000,kkl=4, square, triangle,
dot, circle, and cross curves correspond to the simulations ofb
=2,4,6,8,10,respectivelyscd Scale-free network andsdd random
network, N=1000, kkl=4, where square, triangle, dot, circle, and
cross curves correspond to the simulations ofb
=0.1,0.2,0.3,0.4,0.5, respectively. In all simulations, 50 realiza-
tions are averaged.

FIG. 3. sColor onlined For model I, comparison of theoretical
prediction sdiamond curvesd and simulationssquare curvesd of lc

values forsad Cayley trees,z=3, l =6, kkl=2; for sbd regular net-
works, scd scale-free networks, andsdd random networks,N=1000,
kkl=4.

FIG. 4. sColor onlined For model I withN=1000,kkl=4, simu-
lation results oflc versusb for scale-free and random networks.
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This means that there is a small group of nodes which have
large betweenness but majority of nodes in the network have
small betweenness. Thus, most generated packets will have a
high probability to pass through this small number of high
betweenness nodes, making them vulnerable to congestion.
Qualitatively, we may think that the packet transmission
routes are relatively better distributed for random networks
than for scale-free networks.

How does the congestion condition change with the net-
work’s average degreekkl? Figure 5 shows that in both
scale-free and random networks,lc increases as the average
degree increases. This is because increasing the average de-
gree makes nodes in the networks more connected and hence
the shortest paths are less dependent on the heavily linked
nodes. Consequently, congestion on the heavily linked nodes
can be delayed. As mentioned, betweenness homogeneity is
an important factor for traffic congestion. In order to charac-
terize this feature, we calculate the standard deviation of be-
tweenness defined as

dB =
1

N
Îo

i=1

N

sBi − kBld2, s22d

wherekBl is the average betweenness of the network in con-
sideration. Figure 6 shows the decreasing of the standard
deviation of betweenness for both the scale-free and random
networks as the average degree increases, indicating that the
distribution of betweenness is more homogeneous with in-
creasingkkl. Thus, packet loads of the nodes with the largest
betweenness are reduced and congestion triggered by these
nodes is delayed. From the same figure, we see that, except
for kkl=2, the betweenness deviation in random networks is
smaller than that in scale-free networks. That is, the be-
tweenness distribution in random networks is in general
more homogeneous. This is another supporting factor for the

explanation as to why random networks are more tolerant to
congestion than scale-free networks.

We now present simulation results with model II. Here,
the delivery capacity of each node is proportional to its be-
tweenness, i.e.,Ci =1+intfBi /Ng. Figure 7 shows the order
parameterh versusl for different capacity parametersb for
sad Cayley tree,sbd regular, scd scale-free, andsdd random
network. We see that values oflc are roughly the same for
all kinds of networks considered here, confirming our predic-
tion by Eq.s20d.

Figure 8 shows the critical generating ratelc from theo-
retical predictions and simulations for the four kinds of net-
works. In all cases, good agreement is observed. These simu-

FIG. 5. sColor onlined For model I withN=1000,b=0.2, order
parameterh versus the packet-generating ratel for sad scale-free
networks,sbd random networks. Square, triangle, circle, and cross
curves correspond to the simulations ofkkl=4,6,8,10, respec-
tively. In all simulations, 50 realizations are averaged.

FIG. 6. sColor onlined For N=1000 and 50 realizations, the
standard deviation of betweennessdB versus the average degreekkl
for scale-freesupper traced and randomslower traced networks.

FIG. 7. sColor onlined For model II, order parameterh versus
the packet-generating ratel for sad Cayley tree,z=3, l =6, kkl=2,
thus N=1093; for sbd regular network,scd scale-free network, and
sdd random networks,N=1000, kkl=4. In all of the four cases,
square, triangle, dot, circle, and cross curves correspond to the
simulations ofb=0.0,0.2,0.4,0.6,0.8, respectively. The capacity
of delivery of each node is proportional to its betweenness. In all
simulations, 50 realizations are averaged.

ZHAO et al. PHYSICAL REVIEW E 71, 026125s2005d

026125-6



lation results thus show that protocols based on our model II
are more tolerant to congestion for all kinds of networks
studied here, especially for Cayley trees and regular net-
works.

V. DISCUSSION

We live in a modern world supported by large, complex
networks. Examples range from financial markets to internet,
communication, and transportation systems. Recently there
has been a tremendous effort to study the general structure of
these networksf16–18g. Universal features such as the
small-worldf19g and scale-freef15g properties, which can be
characterized at a quantitative level, have been discovered in
almost all realistic networks. The discoveries suggest that, to
understand the dynamics on complex networks, their struc-
tures have to be taken into account.

This paper addresses the dynamics of traffic flow on com-
plex networks. Our motivation comes from the desire to un-

derstand the influence of topological structure on the traffic
dynamics on a network, as existing works in this direction
often assume regularity and homogeneity for the underlying
network f1–14g. We consider general network structures to
couple with simple traffic-flow models determined by the
rate of information generation and a parameter to describe
the average capacity of nodes to process information. Our
study indicates that phase transition can generally occur in
the sense that free traffic flow can be guaranteed for low
rates of information generation but large rates above a criti-
cal value can result in traffic congestions. Our models enable
the critical value for the phase transition to be estimated
theoretically and computed, given a particular network topol-
ogy. We present computational results and analysis, which
indicate that, in case the delivery capacity of each node is
proportional to its degree, the critical value is smaller for
networks of smaller ratio of degree to betweenness for the set
of most easily congested nodessthe set of nodes with the
largest betweennessd. In this case, random and scale-free net-
works are more tolerant to congestion than trees and regular
networks. This is further supported by examining the effect
of enhancing the capacities of these nodes to process infor-
mation on the global traffic flow. These results suggest a way
to alleviate traffic congestions for protocol based on model I
for networks with a significant heterogeneous component:
making nodes with large betweenness as powerful and effi-
cient as possible for processing and transmitting information.
For protocol based on model II, the capacity of delivery of
each node is proportional to its betweenness. In this case, the
critical value lc is independent of the network topology.
Compared with model I, while model II can improve a little
the performance for scale-free and random networks, it can
improve significantly the performance for trees and regular
networks against congestion.
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