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Free traffic flow on a complex network is key to its normal and efficient functioning. Recent works indicate
that many realistic networks possess connecting topologies with a scale-free feature: the probability distribu-
tion of the number of links at nodes, or the degree distribution, contains a power-law component. A natural
guestion is then how the topology influences the dynamics of traffic flow on a complex network. Here we
present two models to address this question, taking into account the network topology, the information-
generating rate, and the information-processing capacity of individual nodes. For each model, we study four
kinds of networks: scale-free, random, and regular networks and Cayley trees. In the first model, the capacity
of packet delivery of each node is proportional to its number of links, while in the second model, it is
proportional to the number of shortest paths passing through the node. We find, in both models, that there is a
critical rate of information generation, below which the network traffic is free but above which traffic conges-
tion occurs. Theoretical estimates are given for the critical point. For the first model, scale-free networks and
random networks are found to be more tolerant to congestion. For the second model, the congestion condition
is independent of network size and topology, suggesting that this model may be practically useful for designing
communication protocols.
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I. INTRODUCTION and/or deleted from the network. Networks are growing if,

Free, uncongested traffic flows on networks are critica® average, the numbers of nodes and links increase with
for a modern society as its normal and efficient functioningtime. Most large networks are sparse, that is, the average
relies on such networks as the internet, the power grid, angumber of links per node is much smaller than the total
transportation networks, etc. To ensure free traffic flows on &umber of nodes in the network. Growing and complex net-
complex network is naturally of great interest. The aim ofworks may be classified according to whether there exists a
this paper is to address this problem via modeling. Our parhierarchy of organized structures. In particular, in a scale-
ticular interest is to understand under what conditions traffidree network, the number of links of various nodes follows a
congestion can occur on a complex network and to explorgower-law (or algebrai¢ probability distribution, indicating
possible ways of control to alleviate the congestion. Thethat nodes in the network are organized into a hierarchy of
models we have constructed are based on the setting of iigonnected clusters in terms of their numbers of links. In a
formation transmission and exchange on the internet. Thergandom networK20], nodes are connected to each other in a
have been many previous works in this directfda14. A  completely random fashion and, as such, there is no orga-
basic assumption used in these studies is that the networkzed hierarchy of structures in links. Regular networks pos-
possesses a regular and homogeneous structure. Recéass only a few types of linking structures, in contrast to
works reveal, however, that many realistic networks includ-scale-free networks that have an infinite number of possibili-
ing the internet are complex with scale-free and small-worldies of linking. In this sense, the class of small-world net-
featureg15,16]. It is thus of paramount interest to study the works studied by Watts and Strogdti9] is constructed by
effect of network topology on traffic flow, which is the key randomly rewiring only a small fraction of links in a regular
feature that distinguishes our work from the existing onesnetwork and, hence, they are only a perturbed version of the
While our model is for computer networks, we expect it to “backbone” regular network.
be relevant to other practical networks in general, such as the Mathematically, a way to characterize a complex network
postal service network or the airline transportation networkis to examine the degree distributid?(k), wherek is the
Our studies may be useful for designing communication profealization of a random variabk measuring the number of
tocols for complex networks. links at a node. Scale-free networks are characterized by

The structure and dynamics on complex networks have
attracted a tremendous amount of recent intefé6t18
since the seminal works on scale-free networks by Barabasi
and Albert[15] and on the small-world phenomenon by
Watts and StrogatiZ19]. Large networks in nature are always where y>0 is the algebraic scaling exponent. For random
evolving in that nodes and links are continuously added taetworks, the degree distributions are exponential,

P(k) ~ K7, 1)
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P(k) ~ exp(— ak), (2) the existence of a subset of relatively heavily linked nodes in
a network as the key. This is further supported by examining

wherea>0 is a constant. The specific class of small-worldthe effect of enhancing the capacities of these nodes to pro-
networks proposed by Watts and Strogiit®] also assumes C€sS information. From another standpoint, this result sug-
the exponential distribution. It should be noticed that strictlygests a way to alleviate traffic congestions for scale-free net-
scale-free networks are idealized. Realistic networks alway@orks: making heavily linked noded2] as powerful and
contain both scale-free and random components. Thi§fficient as possible for processing information. In the sec-
“mixed” characteristic is the case for many networks in na-ond model, we find that the congestion condition is indepen-
ture such as the scientific-collaboration netwfiB,21], the ~ dent of network size and topology and it thus represents a
movie-actor network22,23, and the conceptual network of More useful protocol for alleviating traffic congestion on net-
language$24]. works, especially for trees and regular networks.
studied extensivel§1-14). In this context, the information IS the one addressing optimal network topologies for local
processors are routers which have the same function as, s@garch on networkgl2]. This paper addressed the problem
workers in the postal service. Routers route the data packe® searchability in complex networks with or without con-
to their destinations. In a computer network, a node may b&estion. The focus was on optimal network configurations in
a host or a router. A host can create packets with addresses {§fms of search cost, with the conclusion that there are only
destination and receive packets from other hosts. A routevo classes of optimal networks: starlike or homogeneous-
finds, for each packet, the shortest path between the host afPtropic configurations, depending on the number of parallel
the destination and forward the packet a|0ng th|s path in eacﬁearches. OUI’ Int.el’eS'[ here IS |r.] the phase.tl’anSItlon from free
time step. Here, by “shortest” we mean the path with thdraffic to congestion and how it occurs with respect to the
smallest number of links. Previous studies focus on two diffMost representative types of complex networks found in re-
ferent classes of computer network models. The first clasdlistic applications: regular, random, and scale-free networks.
treats all nodes as both hosts and rouf@&0-13, and for ~ Despite the difference in the objective, the idea about the
the second clag$,8,13,14, some nodes are hosts and othersdefinition and analysis of congestion in R¢L2] is very
are routers. However, all existing models assume regular netseful, which we have adopted here.
work topology, such as two-dimensional latti¢gs7,8,13 or In Sec. II, we descr_lbe our traf_f|c flow rr!ode_ls. In Sec. Il
Cayley treeg9—-12]. In view of the recent evidence that the We present a theoreupgl ana_IyS|s f_or estimating thel cr|t|qal
internet and many other realistic networks are complex to #0int for phase transition. Simulation results are given in
significant exten{15,16,18, there is a need to investigate Sec. IV and a discussion is offered in Sec. V.
the dynamics of traffic flow on these networks.

In this paper, we construct two dynamical models, each Il. TRAEEIC-ELOW MODELS
with two parameters: the information creation ratend a
control parametep that measures the capacity of nodes to  Our traffic-flow model is based on the routing algorithm
process information. In the first model, the capacity of packetn computer networks. To account for the network topology,
delivery of each node is proportional to its degree, while inwe assume that the capacities for processing information are
the second model, it is proportional to the number of shortestlifferent for different nodes, depending on the numbers of
paths passing through the nodbetweennes$21]). The links (model |) or the number of shortest patiisiodel )
quantity of interest is the critical ratg, of information gen-  passing through them. Our routing algorithm consists of the
eration(as measured by the number of packets created withifollowing steps.
the network in unit timgat which a phase transition occurs (1) At each time step, the probability for nodéo gener-
from free to congested traffic flow. In particular, farcA,,  ate a packet ig.
the numbers of created and delivered packets are balanced, (2) At each time step, a nodeleliversC; packets one step
resulting in a steady state, or free flow of traffic. Ror\,,  toward their destinations, whe@=(1+in{Bk;]) in model |
congestions occur in the sense that the number of accumand C;=(1+inf 8B;/N]) in model Il, 0<3<1 is a control
lated packets increases with time, due to the fact that thparameterk; is the degree of node andB; is its between-
capacities of nodes for delivering packets are limited. We ar@ess. A packet, once reaching its destination, is removed
interested in determining the phase-transition papptgiven  from the traffic.
a network topology, in order to address which kind of net- (3) Once a packet is created, it is placed at the end of the
work is more susceptible to phase transition and thereforgueue if this node already has several packets waiting to be
traffic congestion. For this purpose, we study four kinds ofdelivered to their destinations. The existing packets may be
networks: Cayley trees, regular, random, and scale-free netreated at some previous time steps or they are transmitted
works. Our main result is that, in model A, is larger for  from other nodes. At the same time, a destination node, dif-
networks that have a larger connectivity to betweenness ratiterent from the original one, is chosen at random in the net-
for the small set of nodes with the largest betweenness. Spetork. The router finds a shortest path between the node with
cifically, congestion is easier to occur in Cayley trees, therthe newly created packet and its destination and, the packet
regular networks, then scale-free networks, and random nets forwarded along this path during the following time steps.
works are most tolerant to congestion. We give a theoreticdff there are several shortest paths for one packet, the one is
argument to explain this phenomenon, based on identifyinghosen whose next statiqeelected nodehas the smallest
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number of waiting packets or the shortest queueing length. B,

(4) At each time step, the fir; packets at the top of the Qin =AND—™, (3
queue of node, if it has more tharC; packets in its queue, S B
are forwarded one step toward their destinations and placed -1 !

at the end of the queues of the selected nodes. Otherwise, all

packets in the queue are forwarded one step. This proceduvghereD is the average shortest path length of the network

applies to every node at the same time. As a result, the dénd L.y is the index of the node with the largest between-

livering time that a packet needs to reach its destination i§iess. On the other hand, the total number of packets that the

related not only to the distand@umber of time stepsbe- node.with the largest betweenness can deliver at each time

tween the source and the destination, but also to the numb&tep 1S

of existing packets along its path. Note that, here, the quan-

tity C; measures the forwarding capacity of nade Qout= CLmax' (4)
SinceN is the total number of nodes in the network, the

total number of created packets at each time steyNisand

the total number of delivered packets at each time step i

approximatelyEi'\i1 C, if every node has a sufficient number

of packets, which is greater than the total number of created Q1 = Qe (5)

packets provided that< 1. Due to the network complexity, T ot

packets are more likely to be routed to the nodes with highetrhen,

betweenness on their way to the final destinations. As a re-

Congestion occurs when the number of incoming packets is
qual to or larger than the outgoing packets at the node with
e largest betweenness, i.e.,

sult, packets are more likely to be accumulated at these B,

nodes, resulting in traffic congestion. AND==C__. (6)
Qualitatively, the dynamics of traffic flow on a network is S B

then as follows. For small values of the creation natehe j=1 !

number of packets on the network is small so that every
packet can be processed and delivered in time. Typically,
after a short transient time, a steady state for the traffic flow
is reached in which the instantaneous num(oér) of pack- A=

SinceEJNZIBJ-:N(N—l)D, Eq. (6) can be simplified to

CLmaX(N - 1)

ets, averaged over all nodes in the network, fluctuates about ¢ B.
a constant. That is, on average, the total numbers of packets

created and delivered are equal, resulting in a free-flow staté&quation(7) can be applied to general networks, which is the
This is in fact the well-known Little’s law in queueing theory same result as in Reff12].

[25]. For larger values of, the number of packets created is ~ For model I, Eq(7) turns out to be
more likely to exceed that which can be processed in time. In .

this case{n(t)) grows in time and traffic congestion becomes A= 1+ '”‘[BkLmax])(N -1
possible. As\ is increased from zero, we thus expect to ¢ Bi,.. ’
observe two phases: free flow for smalland a congested o . )
phase for larga., with a phase transition from the former to 10 dain insight, we consider two special cases, regular

the latter at\.. To observe the phase transition and to deter€tworks and Cayley trees. First, for regular networks, all
mine A, given a network structure, are main goals of thishodes have the same structure and the same number of links.
C1 )

We thus have

()

max

(8

paper.
B, =(N-1)D. 9
ll. THEORETICAL ESTIMATION OF CRITICAL POINT The congestion condition can then be estimated by the
following equation:
Here we give a heuristic theory for determining the phase-
transition point\;, given a particular network structure. Be- _1+pk
cause the node with the largest betweenness can be easily Ao~ D (10)

congested and the congestion can quickly spread to the entire

network, it is necessary to consider only the traffic balance ofor regular network® =N/2k, we have

this node. Since the packets are transmitted along the short-

est paths from the source to the destination, the probability 2k(1 + BK)

that a created packet will pass through the node with the creg ™~ N (11)
largest betweennessis Bi/E}\‘lej. At each time step, on

average)\ packets are generated. Thus, the average number Now consider a special kind of regular network, square
of packets that the node with the largest betweenness rdattices with periodic boundary condition. For such a lattice
ceives at each time step is with L XL nodes,D=L/2, we have
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FIG. 1. lllustration of a Cayley
tree with the branching factor
=3 and the level of the leavds
=3. The root is on level 0 and the
depth of the tree is thub+1=4.
Solid circles, circles, and double

/ circle represent leaves, intermedi-

ate nodes, and root, respectively.
-

2(1 + BK) (1+infBB,__ /N])(N-1)
Nejatice™ — - (12) A= Lmax (18)
L BLmax
If B=0, Eq.(12) recovers the estimate of Réfl3] and the
estimate from the mean field model ofis and Lawniczak _(N-1) 19
[7]_ - B, +B (19
A schematic illustration of a Cayley-tree network is max

shown in Fig. 1. Since the root has the highest betweenness ~5 (20)

and a small number of links, it is easy for congestion to
occur at the root, which has a major impact on the wholewvhere, becausB >N in all networks considered in this
tree. For these reasons, can be conveniently estimated by work, the second term in Eq19) dominates. Equatiof20)

only considering the traffic flow through the root. shows that the critical generating rates are roughly indepen-
The total number of nodes in the tree is dent of the network size and topology.
1 By comparing Eq(20) to Eqgs.(11) and(17), we see that,
N=P+2A+2+ - +7= z - 1' (13) although model Il makes no significant improvement on ran-
-1 dom and scale-free networks, it can increagdor regular

networks and Cayley trees. A practical significance is that
rprotocols designed based on model Il can generally be robust
against traffic congestion, regardless of the network topol-

0gy.

The betweenneds; of the root can be calculated by counting
the routes from any node in the tree to different first-orde
subtrees, which must pass through the root. We obtain
IN-1D(z-1)(N-1
g o LN-D@E-DN-D) 14
2z z IV. SIMULATION RESULTS

27 - 1) The primary goal of our simulation is to understand the
== (15) behavior of the phase transition, which leads to traffic con-

2(z-1) gestion, with respect to the network topology. Thus we focus
on examining the value of the critical point for Cayley
trees, regular, random, and scale-free networks. Another goal
is to explore the effect of adjusting the capacity paramgter
n particular, we are interested in the possibility of increasing
he capacities of a small subset of nodes with higher be-

these two factors. The factarmeans that we have precisely tweenness to Improve the networks tolerange to traffic con-
igesnons. In order to characterize the transition, we use the

z ways to choose a first-order subtree. The factor 1/2 rder parameter introduced in RE8]
included because each shortest path has been counted twice: P '

In Eq. (14), the factor(N—1)/z is the number of nodes in
one chosen first-order subtree and the fa¢hdr1)(z—-1)/z
is the number of nodes in all other1 first-order subtrees.
The number of shortest paths from the chosen first-order suk%
tree to any other first-order subtree is the multiplication of

Since the number of links of the root & the number of _ (A®)
packets that the root can deliver per unit time is ﬂ:!m—)\m ; (21
Qout=Cr=1+pz (16)  where AO=0(t+At)-0(t), O(t) is the total number of

packets in the network at time and(---) indicates the av-
erage over time windows dft. When\ <\, the network is
2(1+p82) in the free-flow state; theA® =0 andn=~0. ForA>\;, AO®
EEETEE (17 increases witht.
In our simulations, the networks are generated as follows.

For model Il, the delivery capacity of each node is pro-For all kinds of networks, each node points to a linked
portional to its betweenness, i.€,=1+in{BB;/N]. In this  list, which contains its nearest neighbors. For a Cayley
case, the critical generating rate for general networks betree with depthl+1 and branching factoz, there are
comes N=int[(Z*1-1)/(z-1)] nodes, which are labeled as

PuttingB, andC; in Eq. (7), A¢cayleyiS estimated to be

Accayley™ 7
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0.3 —&— computer simulation 0.3 —&- computer simulation
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FIG. 3. (Color online For model I, comparison of theoretical
prediction (diamond curvesand simulation(square curvesof A,
d values for(a) Cayley treesz=3, 1=6, (k)=2; for (b) regular net-
works, (c) scale-free networks, anld) random networksiN=1000,
(ky=4.

FIG. 2. (Color onling For model |, the order parameterversus
the packet-generating rate for the following. (a) Cayley tree,z
=3,1=6,(k)=2, and thusN=1093. Square, triangle, dot, circle, an
cross curves correspond to the simulationgefl0, 20, 30,40,50,
respectively(b) Regular networkN=1000,(k)=4, square, triangle,
dot, circle, and cross curves correspond to the simulationg of
=2,4,6,8,10respectively(c) Scale-free network antt) random  to traffic congestion. This is because, in Cayley trees and
network, N=1000, (k)=4, where square, triangle, dot, circle, and regular networks, the most congested nodes have large be-
cross curves correspond to the simulations of tweenness, but very small number of links, i.e., the ratio
=0.1,0.2,0.3,0.4,0.5, respectively. In all simulations, 50 realizak_ /B, _is much smaller than those in random and scale-
tions are averaged. free networks. Equationi8) then indicates that thea. for

i , Cayley trees and regular networks is much smaller than that
{0,1,2,... N-1}. Thus the list pointed to by nodeat level ¢ random and scale-free networks.
j€{0,1,...]-1; contains the following node labels as chil-  Eigyre 3 shows the critical generating ratgfrom theo-
dren: {iXZ+1,iXZ+2,...1XZ+Z}. At the same time, (etical predictions and from simulations. The theoretical re-
nodei is inserted in the lists pointed to by each of its chil- gyts are obtained by Eqgl7), (11), and(8) for Cayley trees,
dren. This process begins from the root with node label 0 angegular, random, and scale-free networks, respectively. In all
ends at the last node at levet1. To generate a regular cases, a good agreement is observed. From Fig. 2, we see
network with degre& and the label sefl,2,... N}, each  that the critical packet generation ratesof scale-free and
node i points to a list containing the node labels random networks are of the same order. However, a direct
{i-k/2,...ji-2,i-1,i+1,i+2,...j+k/2}. However, if comparison of simulation result&ig. 4 shows thath. for
i+]>N, the label is replaced biy-j—-N, and ifi—-j<1,itis  random networks is actually larger than that for scale-free
replaced byi—j+N. Scale-free and random networks are networks. As mentioned, scale-free networks are heteroge-
gRe?e[r;lé]ed by using the general network model proposed ifeous in links, which causes heterogeneity in betweenness.

ef. .

First, we present simulation results with model I. Figure 2 0.25 : ,
shows the order parameterversus\ for different capacity —— scale-free networks
parameterg3 for the (a) Cayley tree(b) regular network(c) —=— random networks
scale-free network, an@) random network. We see that, for
all cases consideredy is approximately zero when is
small; it suddenly increases whanis larger than a critical 0.157
value \.. We also observe that; increases with3, which <
means that enhanced capacity for processing packets can 01}
help alleviate possible congestions that are most likely to
occur at the heavily linked nodes. As a result, phase transi-
tion can be delayed in the sense that the network can be more
tolerant to traffic congestions for larger valueshofFigure 2
also indicates that, in order to get the same ordek ofa X 02 03 04 05
large value of the capacity paramejgiis required for Cay- B
ley trees and regular networks; however, sngis needed
for random and scale-free networks. This means that Cayley FIG. 4. (Color online For model | withN=1000,(k)=4, simu-
trees and regular networks are significantly more susceptibliation results of\. versusg for scale-free and random networks.

0.21

0.05]
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60 @ T T T 1500
40+
femd
201
0 "
0
60
(b)
40+
0 0 : :
= 0 10 20
201 <k>
0 2 : FIG. 6. (Color online For N=1000 and 50 realizations, the
0 02 04 06 08 standard deviation of betweennesversus the average degrée

A for scale-freg(upper tracgand randonilower trace networks.

FIG't5' (Color ontllhne) Forkmtodel ! W'tt.hN:;tgoo'f):O'z'l orfder explanation as to why random networks are more tolerant to
parametery versus the packet-generating rateor (a) scale-free congestion than scale-free networks.
networks,(b) random networks. Square, triangle, circle, and cross . . .

. . _ We now present simulation results with model II. Here,
curves correspond to the simulations ¢$=4,6,8,10, respec- . . . . .
: ; . . the delivery capacity of each node is proportional to its be-
tively. In all simulations, 50 realizations are averaged. . - .
tweenness, i.eC;=1+in{B;/N]. Figure 7 shows the order

. . ) arameter versush for different capacity parametegfor
This means that there is a small group of nodes which havi ) Cayley tree,(b) regular, (c) scale-free, andd) random

large betweenness but majority of nodes in the network haviatyork. We see that values nf are roughly the same for

small betweenness. Thus, most generated packets will haveg yijnqs of networks considered here, confirming our predic-
high probability to pass through this small number of highy;,, by Eq.(20).

betw_eer)ness nodes, making them vulnerable to conges_tion. Figure 8 shows the critical generating ratefrom theo-
Qualitatively, we may think that the packet transmission eyica| predictions and simulations for the four kinds of net-

routes are relatively better distributed for random networks,qrks. In all cases good agreement is observed. These simu-
than for scale-free networks. ’

How does the congestion condition change with the net- (@) (b)

work’s average degreék)? Figure 5 shows that in both 60 60
scale-free and random networks, increases as the average r-
degree increases. This is because increasing the average ¢ 40 40
gree makes nodes in the networks more connected and heni= -
the shortest paths are less dependent on the heavily linke 29 20
nodes. Consequently, congestion on the heavily linked node
can be delayed. As mentioned, betweenness homogeneity ¢ ’ 0
an important factor for traffic congestion. In order to charac- 0 02 04 7L0.6 08 1 0 02 04 7Lo.es 08 1
terize this feature, we calculate the standard deviation of be-
tweenness defined as 602 ol
1 N
%=/ 2 (Bi—(B)?, (22) 40 40
N Vi = s
. _ 20 20
where(B) is the average betweenness of the network in con- / /
sideration. Figure 6 shows the decreasing of the standarc 0
deviation of betweenness for both the scale-free and randon o 02 04 xo's 08 1 0 02 04 x0'6 08 1

networks as the average degree increases, indicating that tr..
distribution of betweenness is more homogeneous with in- .

. . FIG. 7. (Color onlineg For model Il, order parametey versus
creasingk). Thus, packet loads of the nodes with the largest, packet-generating ratefor (a) Cayley treez=3, 1=6, (k)=2,
betweenness are reduced and congestion triggered by thegfis n=1093; for (b) regular network/c) scale-free network, and
nodes is delayed. From the sanje_flgu_re, we see that, eXCeR random networksN=1000, (k)=4. In all of the four cases,
for (k)=2, the betweenness deviation in random networks igquare, triangle, dot, circle, and cross curves correspond to the
smaller than that in scale-free networks. That is, the besimulations of3=0.0,0.2,0.4,0.6,0.8, respectively. The capacity
tweenness distribution in random networks is in generabf delivery of each node is proportional to its betweenness. In all
more homogeneous. This is another supporting factor for theimulations, 50 realizations are averaged.
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derstand the influence of topological structure on the traffic

dynamics on a network, as existing works in this direction

)]
g:: 2:2 often assume regularity and homogeneity for the underlying
(<°04 (<°04 network [;—14}[. We conglder general network gtructures to
' ' couple with simple traffic-flow models determined by the
0.2 @) 0.2 () rate of information generation and a parameter to describe
% 02 02 06 08 B 02 04 06 o8 the average capacity of nodes to process information. Our
p B study indicates that phase transition can generally occur in
1} —o— theoretical estimation 1| = theoretical estimation the sens'e that free traffic ﬂOW can be guaranteed for IOW
5~ computer simulation 5~ computer simulation rates of information generation but large rates above a criti-
08 08 cal value can result in traffic congestions. Our models enable
< 0.6 o0 the critical value for the phase transition to be estimated
0.4 0.4 theoretically and computed, given a particular network topol-
0.2 0.2

d ogy. We present computational results and analysis, which
0 © (@) indicate that, in case the delivery capacity of each node is
04 06 08 0 02 04 06 08 : . " .
B B proportional to its degree, the critical value is smaller for
networks of smaller ratio of degree to betweenness for the set
of most easily congested nodébe set of nodes with the
largest betweennesdn this case, random and scale-free net-
works are more tolerant to congestion than trees and regular
networks. This is further supported by examining the effect
of enhancing the capacities of these nodes to process infor-
mation on the global traffic flow. These results suggest a way
lation results thus show that protocols based on our model lfo alleviate traffic congestions for protocol based on model |
are more tolerant to congestion for all kinds of networksfor networks with a significant heterogeneous component:
studied here, especially for Cayley trees and regular nethaking nodes with large betweenness as powerful and effi-
works. cient as possible for processing and transmitting information.
For protocol based on model II, the capacity of delivery of
V. DISCUSSION each node is proportional to its betweenness. In this case, the

We live in a modern world supported by large, Comp|excritical value.)\C is independent of the netyvork topolo_gy.
networks. Examples range from financial markets to interne{COmpared with model I, while model Il can improve a little
communication, and transportation systems. Recently ther&€ Performance for scale-free and random networks, it can
has been a tremendous effort to study the general structure BFProve significantly the performance for trees and regular
these networks16—18. Universal features such as the N€tworks against congestion.
small-world[19] and scale-fre€l15] properties, which can be
characterized at a quantitative level, have been discovered in
almost all realistic networks. The discoveries suggest that, to
understand the dynamics on complex networks, their struc- Z. Liu provided assistance in the initial phase of this
tures have to be taken into account. project. The work was supported by AFOSR under Grant No.

This paper addresses the dynamics of traffic flow on comF49620-01-1-0317 and by NSF under Grant No. ITR-
plex networks. Our motivation comes from the desire to un0312131.

FIG. 8. (Color online For model Il, comparison of theoretical
prediction (diamond curves and computer simulation(square
curves of \; versus the capacity paramef@ifor (a) Cayley trees,
z=3, 1=6, (ky=2; for (b) regular, (c) scale-free, andd) random
networks,N=1000,(k)=4.
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